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Abstract 

The twistor fibration r : Q+ + S6 fibres the non-degenerate, six-dimensional complex quadric 
hypersurface Q+ over the conformal six-sphere S6 with fiber Pj(@). In this paper we show that the 
map r induces an isomorphism of one component of the space of linear &(@)‘s lying on Q+ which 
are not fibres onto the space of oriented conformal four-spheres of S6; further, this map lifts to a map 
between the corresponding tautological bundles which fibre by fibre is the usual Penrose twistor 
fibration F’s(@) + S4. It is also shown that a holomorphic vector bundle over a non-degenerate, 
complex quadric hypersurface of dimension greater than or equal to six is trivial if and only if its 
restriction to a linear P*(C) is trivial. 
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1. Introduction 

The Penrose transform establishes a correspondence between the conformal geometry of 
the standard four-sphere S4 and the holomorphic geometry of projective lines on P3(Q. The 
complex manifold P3 (C) is obtained from S4 as a fibre bundle with fibre P1 (C) by the twistor 
space construction and given P3 (Q, there is also a way of recovering S4 and its conformal 
structure (cf. [AHS] for example). The twistor space construction can be generalised to 
any even-dimensional, oriented manifold equipped with a conformal structure (cf. [BeO], 
[I], [O’BR] or [S]) and in this paper we will look at what happens when it is applied to 
the standard six-sphere S6. The complex manifold that we obtain (cf. [I,W]) is the six- 
dimensional, non-degenerate quadric hypersurface Q+ fibred over S6 with fibre P3 (C). It is 

’ E-mail: slupins@math.u-strasbg.fr. 

0393-0440/96/$15.00 Copyright 0 1996 Elsevier Science B.V. All rights reserved. 
.SSDI 0393-0440(95)00036-4 



M.J. SlupinskiIJournal of Geometry and Physics I9 (I 996) 246-266 241 

classical (cf. [GH] for example) that there are two families of linear P3(C)‘s lying on Q+, 
say Q and Q-. The first main result of this paper, refining results of Inoue in [I], describes 
one of these families, which we will take as Q and which is the family containing the fibres, 
in terms of the conformal geometry of S’. 

Theorem 1.1. 
(i) [f P is a P3 (C) belonging to the family parametrised by Q, then P is either a jibre 

of the twistor$bration r : Q+ + S6 or its image r(P) is a conformal four sphere 
(ct [I]); furthermore r : P + t(P) is isomorphic to the PenroseJibration for a suitable 
orientation oft(P). 

(ii) Over each conformal four sphere S in S6, there are exactly two P3 (C)‘s of the family 
Q. They induce opposite orientations on S and intesect eachjibre of 5 : Q+ + S6 over 
S in two disjoint PI (C)‘s. They are the images in Q+ of the twistor lifts (c$ Dqfinition 
4.8) of the inclusion S q S6. 

Thus t maps the space of P3(C)‘s in the family Q which are not fibres isomorphically 
onto the space of oriented conformal four-spheres in S6, and lifts to a map between the 
corresponding tautological bundles which fibre by fibre is the usual Penrose twistor fibration 
of P3 (C) over S4. 

To prove this theorem, we realise the conformal sphere Se’ as the projective isotropic cone 
of a real, eight-dimensional inner product space of Lorentz signature (7, 1). Spinor spaces 
of this Lorentz space then provide a convenient way of modeling the twistor fibration of S6, 
and of parametrising the above families of linear P3(@)‘s on its twistor space. 

As an application, we prove the following theorem and corollary. 

Theorem 1.2. If c -+ Q+ is a holomorphic vector bundle such that the restriction to every 
fibre of r : Q+ + S6 is holomorphically trivial, then c + Q+ is holomorphically trivial. 

Corollary 1.3. Let G be a non-degenerate, complex quadric hypersur$ace of dimension 
greater than or equal to six. lfc + G is a holomorphic vector bundle such that c restricted 
to a linear P2(@) is holomorphically trivial, then 6 -+ G is holomorphically trivial. 

There is at least one aspect of the Penrose transform for four-manifolds which does not 
generalise to dimension six. For instance, the P3(C) realised as the Penrose transform of 
S4 comes with a real structure, that is an antiholomorphic fibre-preserving involution c 
which has no fixed points. This is important because it is using o that one recovers S4 
and its conformal structure from P3(C) (cf. [AHS]). The twistor space of S6 has no such 
involution. However, it is shown in [I] that the fibre component of the space of P3(C)‘s on 
the twistor space of S6 does have a natural, antiholomorphic involution, and that one can 
then recover S6 and its conformal geometry as the fixed point set. In Section 5 we give an 
intrinsic definition of this real structure using the notion of the twistor lift of a codimension 
two, immersed, oriented submanifold. 
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As a corollary of the observation that the twistor space of S6 is Ktiler and a theorem 
of Burns-de Bartolomeis [BdeB], we give a conformal proof of the following theorem of 
LeBrun [LeB]. 

Theorem 1.4. There does not exist an integrable, almost complex structure on S6 which is 
compatible with the standard conformal structure. 

2. Clifford algebras and spinors 

In this section we will recall some basic facts about Clifford algebras and spinors, only 
proving those which are not completely standard. For more details, see Cartan’s book [Cl. 

If W is a complex vector space equipped with a non-degenerate, symmetric bilinear 
form g, the Clifford algebra C(W, g) is defined as the quotient algebra T(W)&, where 
T(W) is the tensor algebra on V and & is the two-sided ideal generated by elements of 
the form w 8 w + g(w, w)l. The natural map A(W) -+ T(W) -+ C(W, g) is a vector 
space isomorphism equivarient for the natural action of the orthogonal group 0 ( W, g) and 
if el, ez,. . . , e, is an orthogonal basis of W, the algebra C(W, g) is generated by their 
images via this inclusion, subject to the relations. 

eif?j + ejei = -2g(ei, ej)l. 

The Clifford algebra has the following universal property: every linear map f : W + A 
from W to an associative algebra with identity A such that f(w)* = -g(w, w)l~ for all 
w E W, extends to a unique algebra homomorphism f” : C( W, g) + A. 

The natural Z2-grading of T(W) into even and odd degree tensors induces a Z2-grading 
of the Clifford algebra C( W, g) = C+ @C_. More generally, any automorphism (resp. anti- 
automorphism) of T(W) which preserves the ideal & induces an automorphism (resp. anti- 
automorphism) of C( W, g). In particular, we will write x H xt for the anti-automorphism 
induced by WI @ w2 @ .‘. @ Wk H Wk 8 W&l @ ... C3 WI, and if U : W + W is a 
real form of (W, g), we write x I-+ X for the induced conjugate linear automorphism of 
C( W, g) which extends 0. 

When dim W = 2m is even, one can show that C( W, g) is a full matrix algebra and if we 
choose a complex vector space S of dimension 2” and an algebra isomorphism C( W, g) S 
End(S), we call S a space of spinors for (W, g). The various natural automorphisms of 
C(W, g) are realised by geometric structures on S: there is a &-grading S = S+ @ S- 
such that C+ . S+ c & and C- . S+ g S,; there is a (unique upto a constant factor) 
non-degenerate, bilinear form Bs : S x S + Cc such that Bs(x . $, 4) = Bs(@,x’ . 4) 
and then Bs(ll/,$) = (-1) m(m-*)/2Bs(@, +); there is a (unique upto phase factor eie) 
conjugate linear j : S + S such that j(x . I+%) = X . j(q) and j* = &Ids (the sign will 
depend on the signature of a). 

In particular, if dim W = 6 and (T is of Lorentz signature (5, I), we find that j* = -Id 
and so j induces a quatemionic structure on each of the four-dimensional complex vector 
space S+ and S-. The classical Penrose twistor fibration (cf. [AHS]) T : P3(@) -+ S4 can 
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be recovered as follows: take a non-zero positive spinor + E S+ and let [$I E P(S+) be 
the corresponding complex line; then {w E W : w I++ = a(w) 1+4 = 0) is a real, isotropic 
(since w2 + = -g( w, w)+ = 0) line in W and so defines a point of the real, projective 
isotropic cone of (W, g, a), which is well known to be isomorphic to the standard conformal 
four-sphere S4. The map which sends [$I to this point is the Penrose twistor fibration. (The 
analogous process starting from the other projective spinor space P(S_) gives the Penrose 
fibration of the same four-sphere but with respect to the opposite orientation.) This point of 
view will be explained more fully in Section 3. 

Let us now examine the situation in eight dimensions in more detail. To fix the notation. let 
V be an eight-dimensional, complex vector space and let B be a non-degenerate, symmetric 
bilinear form on V. Let C be the Clifford algebra of (V, B) and if we choose a spinor space 
C, then 

will be the decomposition of the 16-dimensional spinor space C as the sum of the two 
eight-dimensional semi-spinor spaces. According to the general discussion above, we can 
choose a non-degenerate, symmetric bilinear form Bc on Z such that 

BE(x. @, 4) = Bc(+, xt . @), where x E C; I/J, 4 E C. 

It can be shown that Bc(C+, C_) = 0 (see [Cl) so that each of the spaces Ck has its 
own symmetric bilinear form B& = BJC*. Notice that each of the spaces Ci is an eight- 
dimensional complex vector space equipped with a symmetric, non-degenerate bilinear 
form which is exactly the kind of object which we started with. This is a manifestation of 
the symmetry which exists in dimension eight between the three types of objects: vectors 
(V), positive semi-spinors (C+) and negative semi-spinors (C_). This symmetry is often 
referred to as the ‘principle of triality’ (cf. [Cl). 

Notation 2.1. We will denote by Q the space of isotropic lines in V. This is a smooth, 
six-dimensional quadric hypersurface in the projective space P(V): 

Q = (L E P(V): BIL = 0). 

The spaces Q+ are defined similarly-they are smooth quadric hypersurfaces in P(Q+), 
isomorphic to Q as complex manifolds. If x E V is a non-zero vector, then [xl E P(V) will 
be the corresponding line. 

Lying on Q there are two families of P3 (C)‘s given by the images in P(V) of maximal 
isotropic subspaces of (V, B). By the theory of spinors (cf. [Cl), the space of maximal 
isotropic subspaces of V is parametrised by the disjoint union Q+ U Q_ : if [$I E Q*, then 
Ann($) = {x E V : x . $ = 0) is maximal isotropic and any maximal isotropic subspace 
of V is uniquely obtained in this way. 

The quadric Q has a natural complex conformal structure (see Section 3.1) and the 
complex tangent spaces to these P~(@)‘s passing through a given point of Q realise the 
maximal isotropic subspaces of this conformal structure at that point. 
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Similarly, lying on Q+ there are two families of P3(C)‘s given by the images in P( .E+) of 
maximal isotropic subspaces of (Z+, B+). These can be parametrised by the disjoint union 
Q U Q_ in the following way: if [v] E Q, then Ker u = {$ E .E+ : u . I,+ = 0) is maximal 
isotropic, and if [$_I E Q- then V . @_ c ,?Z+ is maximal isotropic. In analogous fashion 
the maximal isotropic subspaces of (C_, B-) are parametrised by Q U Q+. 

These observations can be refined (cf. [Cl) to give: 

Proposition 2.2. 
(a) Consider the two families Q+ and Q- ofP3(@)‘s on Q as above. Two P3(C)‘s in the 

same family intersect in either a P3 (C), a PI (C) or not at all. Two P3 (C)‘s in opposite 
families intersect in either a Pz (C) or a point. 

(b) Let A c V be an isotropic subspace of dimension r, where 1 ( r 5 4 and let Ker* A = 
Ker A n Ck. Then: 
(i) dim Ker A = 24-’ and Ker A is BE-isotropic. 

(ii) Ker A = Ker+A $ Ker-A and if r < 4, dim Ker* A = 24-r-‘. 
(c) Let o : V + V be a real form of (V, B) (. i.e. (T is a conjugate linear involution such 

that B(a(vl), o(v2)) = B(vl, ~2)) and let j : C + C be a corresponding structure 
map (see above). If [$I E Q+ U Q- is a projective isotropic semi-spinor, then: 

(9 Ann(j(@)) = o(Ann(lCI)); 
(ii) Ann(+) n a(Ann(@)) is an isotropic subspace of V, stable under o. 

Proof For proofs of (a) and (b), see [Cl. The statement (c)(i) follows immediately from 
the defining relation of j, namely j (u . $) = c(u) . j (+), and the statement (c)(ii) follows 
since the intersection of two isotropic subspaces is isotropic. 0 

2.1 

Most of the information discussed above can be conveniently summarised in the following 
incidence diagrams: 

I+ 
“J V 

Q Q+ Q Q- Q+ Q- 

For example, an element of Z+ is a couple ([xl, n), where [x] is an isotropic line in V and 
l7 is a P3(@)on Q in the family parametrised by Q+ such that [x] E n. Alternatively we 
can think of elements of Z+ as couples ([xl, [+I), where x E V, J/J E ,WE+ satisfy x .$ = 0. 
The fibres of p are isomorphic to P3(C) by definition and Proposition 2.2 shows that the 
fibres of II are also isomorphic to P3 (C). 

2.2 

If x E V is an isotropic vector, let L, c V be the line spanned by x and let L$ be the 
orthogonal complement of L, with respect to B. We will write K, for Ker x = ( $I E C : 
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x . q!r = 0) and K: for Ker x n &. Notice that the K,: are BE -isotropic of dimension four 
by Proposition 2.2(a). 

If y E Lb, then in the Clifford algebra of V we have y. x +x f y = 0 and so y. K, C K., . 
Hence, since x acts trivially on K, by Clifford multiplication, we have a map J’ : L_/ L,r + 
End (K,). The six-dimensional vector space L:/L.y inherits a symmetric, non-degenerate 
bilinear form from B, say B,, since L, is isotropic and it is clear that 

.fx(o) 0 fi(B) + &f;(B) 0 fx(a) = -2B,(o, B)Id Va. /9 E L~/L,~. 

This means that the map fx extends to an algebra homomorphism fY : C( L.~/L_~, B,r) + 
End (K,), where C(L_$/L,, B,) denotes the Clifford algebra of the inner product space 
(Li_IL,, B,). 

Proposition 2.3. 
(i) The map fx : C(L:/L,, B,) + End(K,) is an algebra isomorphism. 

(ii) The decompositon K, = K.: @ K, is the decomposition into semi-spinor spaces. 

Proof Exercise. 3 

Let (X, B) be a six-dimensional, non-degenerate, complex inner product space and let 
S = S+ @ S be an associated spinor space. Parts (a) and (b) of Proposition 2.4 describe the 
link between projective semi-spinors, maximal isotropic subspaces and isometric complex 
structures in this dimension. When (X, B) has a positive definite real form, part(c) describes 
how the space of isometric complex structures of a codimension two real subspace is 
embedded in (one component) of the space of isometric complex structures of X0. 

Proposition 2.4. 
(a) The disjoint union ofprojective spaces P(S+) UP( S-) naturallyparametrises the space 

of maximal isotropic subspaces of (X, B). The parametrisation associates to ]$I E 
P(S+) U P(S-) the maximal isotropic subspace Ann($) = (UJ E X: w I+II = 0). 

(b) Let o be a positive definite real form of (X, B). Then Ann($) n a(Ann(+)) = (0). 
Furthermore, the map which associates to [$I E P(S+) U P(S-) the comp1e.x structure 
on X0 whose space of(0, I)-vectors is Ann($) = (w E X : w $r = 0) is a bijection of 
the disjoint union ofprojective spaces P(S+) U P(F) onto the space 2(X”. B 1 ,y” ) of 
complex structures of the real vector space X* which are isometric for the restriction of 
B to X”. The orientation, say co+, of X” induced by a complex structure corresponding 
to an element of P(S+) is opposite to the orientation of X0 induced by a complex 
structure corresponding to an element of P( S- ). 

(c) Let o be a positive definite realform of (X, B), let W c XU be a realfour-dimensional 
subspace and let W’@C = A@ A be the uniqe decomposition of its complex orthogonal 
complement as a sum of isotropic subspaces. Then: 
(i) ([Ql E P(S+): A. $ = 0 or A . q = 0) is the disjoint union of two linear PI (C)‘s 

{[$I E P(S+): A. $ = O] and ([+I E P(S+): A. $ = 0); 
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(ii) the btjection of(b) maps {[@I E P(S+) : A . + = 0 or A . @ = 0) onto the space 
of isometric complex structures of XC which preserve the subspace W and which 
induce the orientation o+; 

(iii) by restriction to W c X0, the space of isometric complex structures of X0 which 
preserve the subspace W and which induce the orientation w+ is in bijection with 
the space 3( W, B(W) of all isometric complex structures of ( W, B 1 w). 

Remark 2.5. If D is a one-dimensional complex vector space and (X, B) is as in Proposi- 
tion 2.4, then X@ D has a natural conformal structure induced by the inner product of X. The 
maximal isotropic subspaces of X and X @ D are then in natural bijection (M ++ M 63 D). If 
(X, B) and D have real structures, the space of complex structures of (X @I D)O’ preserving 
the conformal structure is in natural bijection with the space of isometric complex structures 
of XV, and thus also can be parametrised by P(S+) U P(S). 

Proof of Proposition 2.4. More generally, it is true (see [Cl) that for a non-degenerate inner 
product space of dimension four or six, the union of the spaces of projective semi-spinors 
parametrises the space of maximal isotropic subspaces in this way. This proves part (a). 

Part (b) is also,well known. The point is that for Ann(@) to be the space of (0, I)-vectors 
of a complex structure on X”, it must satisfy Ann(e) n a(Ann(@)) = [O). This is true 
because otherwise there would exist non-zero real isotropic vectors, which is impossible 
when the signature is definite. 

To prove part (c), left us denote by J,J, the isometric complex structure on X” corre- 
sponding to [+I E P(S+> by (b). Then A . @ = 0 means that A is a space of (0, I)-vectors 
for Jq, so that J IA = -i IdA and (by conjugation) J 1~ = i Id,. Hence J$ preserves the 
subspace A @ A of X and therefore also its orthogonal complement W @ C. Since Jp is 
real it must also preserve W. 

Conversely, given an isometric complex structure J of X0 which induces the orientation 
o+ and preserves W, let [$J] be the corresponding element of P(S+). Then J preserves 
the two-dimensional W’ @I @ and so we have the decomposition as a direct sum of one- 
dimensional eigenspaces 

W’ @ C = (u: J(u) = iu) @ {u: J(u) = -iu}, 

and since J is isometric, the eigenspaces are isotropic. Comparing this with the decompo- 
sition 

we must have {u : J(u) = -iu) = A or (u : J(u) = -iu) = A. Thus either A or A is of 
type (0,l) for J and thus either A . @J = 0 or A . $J = 0. 

The final part of (c) follows because (W’)“, being two-dimensional, has exactly two 
isometric complex structures, say J,I and - J,L. Hence any isometric complex structure 
Jw of (W, B 1 w ) can be extended to an isometric complex structure JG of X0 inducing the 
orientation o+ by setting 7~ = Jw @ J,L or 7~ = Jw @I - J,I, depending on which 
one of these induces the orientation w+. ??
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3. The conformal six-sphere as a real form of Q 

3.1 

Let us choose a real form CJ of (V. B) of signature (7, 1). This is by definition a conjugate 
linearinvolutiona : V + VsuchthatB(a(ut),a(uz)) = B(ut.v2)Vvt, u2 E Vandsuch 
that the restriction of B to the fixed point set of (T. V “, is of signature (7, 1) (i.e. there are 
seven positive eigenvalues and one negative eigenvalue). 

As explained in Section 2, D induces a conjugate linear structure map on spinors j : 
C -+ C, which in this signature satisfies j2 = Id and j (C+) = C_, j(C_) = C+ (cf. 
[Cl). This in turn induces an antiholomorphic involution of Q+ U Q_ sending Q+ to Q_. 
which we will also denote by j. 

It is well known that the fixed point set of the induced action of CJ on the projective 
isotropic cone Q is diffeomorphic to the six-sphere. Henceforth we will denote this sphere 
by S6. It is also well known that the six-sphere realised in this way is naturally equipped 
with its standard conformal structure. This follows from the basic fact that there is a natural 
isomorphism of complex vector spaces 

TLQ ” L* @c L%. (1) 

where L E Q is an isotropic line and TLQ is the complex tangent space to the quadric 
Q at the point L E Q. The vector space L’/L carries the induced non-degenerate inner 
product BL (cf. Section 2.2) and this defines a non-degenerate inner product on TL Q up to 
a scalar factor via the isomorphism (1): in other words, the quadric Q has a natural complex 
conformal structure. If L is a real isotropic line in V, the real structure maps L’ to L’ and 
taking real points on both sides of (1) we get an isomorphism of real vector spaces at the 
point L E S” 

TLS6 2 (L*)O @R (L’/L)” (2) 

and the complex conformal structure is reduced by (T to a real conformal structure of 
signature (6,O) on TL S6. 

Conversely, it is natural to ask to what extent the objects V, C+, C_. Q, Q+? Q_. etc. 
are determined by the conformal geometry of S6. 

By Proposition 2.3, the vector bundle over Q whose fibre at [x] E Q is K., and which 
we will denote by K --+ Q, is a bundle of spinors for the vector bundle over Q whose 
Iibre at [x] E Q is (L$/L,, B_,) in the sense that we have natural isomorphisms fX : 
C((L$/L.,), B,) 2: End(K.,) which dependalgebraically on [xl. (By definition the bundles 
P(K+) + Q and P(K-) -+ Q are precisely the incidence bundles n : I+ --f Q and ni : 
I_ + Q of Section 2.1.) 

The structure map j : C + C satisfies j( K,f) = Krr<_r, and j (K;) = Kzc,v,, and thus 
provides a antiholomorphic lift of the real structure a : Q + Q to the bundle K -+ Q. If 
[x] E S6 C Q is real, the subspace K, c C is stable under j : C -_, C and so j induces a 
conjugate linear involution of the fibre K, which exchanges K_$ and K_;. 
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By Proposition 2.4 and Remark 2.5, at each point [x] E S6 the disjoint union P(K,f ) U 
P(K;) is isomorphic to the space of almost complex structures of Tt,jS6 2 L”@(L~/L,)” 
which preserve the conformal structure. Thus the disjoint union of projective bundles 
P(K+) U P(K-) +- S6 is naturally isomorphic to the bundle of pointwise almost complex 
structures which are compatible with the pointwise conformal structure of S6, and is there- 
fore intrinsically associated to the conformal structure of S6. Complex structures in the two 
different connected components P(K+) and P(K-) are distinguished by the fact that they 
induce opposite orientations on S6. 

Consider the bundle P(K+) -+ S6. For each [x] E S6 the fibre P(K,f) is a P3(@) lying 
on the quadric Q+ and we now show that as [x] varies in S6, this fibres the quadric Q+ 
over the sphere S6. 

Proposition 3.1. 
(a) Suppose [xl, [y] are distinct points of S6. Then the maximal isotropic subspaces K,’ 

and KYf of E+ are disjoint: K,’ fl KT = {O). 
(b) Zf[$] E Q+, then {x E Vu : x . $I = 0) = Ann($) fl a(Ann(@)) is of dimension one. 

Proof 
(a) Suppose for contradiction that there exists a non-zero spinor $ E K$ fl KT. Then by 

definition x . $ = y. @ = 0 and so -2B(x, y)+ = x . y . $I + y ’ x . IJ? = 0. Thus 
B(x, y) = 0 and the vectors x and y are orthogonal, spanning a real, two-dimensional 
isotropic subspace. These do not exist in signature (7,l) and we have a contradiction. 

(b) Take [+I E Q+. By Proposition 2.2(c)(ii), Ann(@) II o(Ann($)) is an isotropic sub- 
space of V which is stable under U, i.e. it is the complexification of a real isotropic 
subspace of Vu. Since we are in signature (7, l), this real vector space is of dimension 
zero or one. On the other hand, 

a(Ann(lCI>) = Ann(j ($>I 

by Proposition 2.2(c)(i) and j(e) E C_ in signature (7, 1) as indicated above. Hence 
by Proposition 2.2(b), dim(Ann(+) n a(Ann(@))) = dim(Ann($) n (Ann(j(@)))) is 
equal to one or three and so in fact dim(Ann(+) tl a(Ann(+))) = 1. 0 

The following proposition resumes the situation. 

Proposition 3.2. The map 5 : Q+ + S6 given by 

t([@+]) = [(x E vu: x ++ = 011 = Ann(lCI+> n a(Ann(lCr+)> 

jibres the quadric Q+ over S6 withfibre P3(@) and induces an orientation o+ on S6. It is 
C”-isomorphic to one component of the bundle of pointwise almost complex structures of 
S6 which are compatible with the conformal structure of S6 and induce the orientation w+. 
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Thus we know how to obtain the P-manifold Q+ from the conformal structure of S6 
plus an orientation, and the question now is how do we obtain its complex structure from 
this data. This is explained in the next section. 

4. The twistor construction 

In this section we will describe briefly the general twistor construction of which the 
fibration t : Q+ + S6 of Section 3 is a special case. For more details and proofs see 
[AHS], [BeO], [I], [O’BR] or [S]. 

Definition 4.1. Let (M. W, [g]) represent a real 2n-dimensional manifold M equipped 
with a positive-definite conformal structure [R] and an orientation w. The twistor space of 
(M. o, [g]) is the pair (Z+, J+) where: 

(i) Z+ is the total space of the tibre bundle over M whose tibre at m E M is the space 
of complex structures (henceforth abbreviated to CS) on T,, M which preserve the 
conformal structure [g] and induce the orientation w. Note that a fibre is isomorphic 
to the homogeneous manifold S0(2n)/U(n) and therefore has two (opposite) natural 
complex stuctures and a natural Kahler metric. 

(ii) The pullback of the tangent bundle of M to Z+ has a tautological CS and can be 
identified with the horizontal subspace of TZf via the Levi-Civita connection of 
any metric in the conformal class. The almost complex structure (henceforth ACS) 
J+ : TZ+ + TZ+ is defined as the direct sum of this CS in horizontal directions 
and one of the natural CS of(i) in fibre directions (precisely which one is given in the 
references above). 

Here are the basic properties of this construction. 

Remark 4.2. The pair (Z+, J+) depends only on the conformal structure of M even though 
a metric was needed for the definition of J+. Each fibre is canonically a Kahler manifold. 

Remark 4.3. The ACS J+ is integrable iff (M, [g]) is conformally flat (resp. half-confor- 
mally flat) when dim M > 4 (resp. dim M = 4). Then a Iibre Z+(m) is a complex subman- 
ifold of Z+ and the holomorphic normal bundle N + Z+(m) satisfies dim H”(N) = 2n 
and H’(N) = @(N*) = H’(N*) = [O) (cf. [I] or [S]). 

Remark 4.4. One can alsodefine the ‘anti-twistor’ space (Z-, J-) of (M, co, [g]) as above 
but using CS which induce the orientation --w. The map J H -J then defines an ‘anti- 
holomorphic’ involution of (Z+, J+) if dim M = 4k, and an antiholomorphic isomorphism 
of (Z+. J+) with (Z-, J-) if dim M = 4k + 2. If (M. [g]) is a manifold with conformal 
structure (not oriented) then one can define the ‘total’ twistor space as above but using all 
pointwise CS which preserve the conformal structure. If M connected is not orientable this 
will be a connected manifold, but if M is orientable it will have two connected components 
Z+ and ZP. 
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Remark 4.5. The natural lift to Z+ of an orientation preserving, conformal transformation 
of M preserves the ACS Jf. 

Remark 4.6 (cf. [BdeB]). If m FF J(m) is a global ACS on M which preserves the 
conformal structure and induces the orientation w, then it is integrable iff the tangent space 
of the submanifold ((m, J(m)) : m E M) c Z+ is stable under J+. 

By Section 3, the fibration r : Q+ + S6 is smoothly isomorphic to the twistor fibration 
of (S6, w+). It remains to be proved that the holomorphic structure of Q+ corresponds 
to the holomorphic structure of twistor space described above. This is a straightforward 
verification based on the fact that the holomorphic structure on twistor space is the only one 
invariant by the action of the group of direct, conformal transformations of S6. Using this 
we can give a conformal proof of the following theorem of LeBrun ([LeB]). 

Theorem 4.7. There does not exist an integrable, almost complex structure on S6 which is 
compatible with the standard conformal structure. 

Proof By the theorem of Bums-de Bartolomeis (i.e. Remark 4.6), such an almost complex 
structure would give rise to a complex submanifold of twistor space, evidently isomorphic 
to S6. By the above discussion, the twistor space of S6 is isomorphic to the quadric Q+, 
which is projective and therefore KHhler. Hence any complex submanifold is also KMer 
and therefore has non-trivial second cohomology group. This is not the case for S6 so we 
have a contradiction. 0 

The following definition and simple proposition will be needed later. 

Definition 4.8. Let (M, [g], w) be as above, let i : N + M be a codimension two im- 
mersion of an oriented manifold N and let Ti(,)M = i*(Tn N) @ (i* (Tn N))’ be the corre- 
sponding orthogonal decomposition of tangent spaces. Let J’ and -J’ be the two CS on 
(iL(Tn N))’ which preserve the induced conformal structure. If Z+(N) -+ N is the twistor 
space of N with respect to the induced conformal structure and given orientation, the direct 
twistor lift of the map i : N -+ M is defined to be the map i+ : Z+(N) + Z+(M) where 

i(J,) = Jn @J’ or Jn @-JL, 

depending on whether J,, @ J’ or Jn @ -J’ induces the orientation w. Similarly one 
defines the opposite twistor lift i- : Z-(N) + Z+(M). 

Proposition 4.9. With (M, [g], w) as above, let F E A2 (T,* M @I C) be a complex two form 
at m E M and let L&(m) denote the space of CS of T,,,M which preserve the conformal 
structure and induce the orientation w. For J E s+(m) denote by Fy’2 the component of 
type (0,2) of F with respect to J. Then ifdim M 2 6, 

F0,2 
J =0 VJ ??z+(m) + F =O. 
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Corollary 4.10. Let 7r : Z+ -+ M be the twistorfibration and suppose dim M > 6. If 
F E C”(A*(T*M)) is a global two-form such that n*F has no component of type (0.2) 
with respect to the almost complex structure J+, then F = 0. 

ProofofProposition 4.9. The subspace (F E A*(T,* 8 a=) : Fy” = 0 VJ E G+(m)) of 
A*(TGM 63 a=) is stable under the action of SO(T, M, gm), the group of direct orthogonal 
transformations of Tm M which preserve any metric in the conformal class. It is well known 
that the complex two forms are an irreducible representation space of the special orthogonal 
group if the dimension is greater than five and hence this set is either A*(T,* M @ @) or (0}, 
the first possibility being clear excluded. 0 

To prove Corollary 4.10 it is sufficient to note that if rr* F has no component of type 
(0,2), then at m E M, F(m) E A*(T, M* 63 Q has no component of type (0,2) for all CS 
J E ;i+(m) by the very definition of the almost complex structure Jf on Z+. 

Remark 4.11. This proposition is not true in dimension four since there the space of two 
forms can be decomposed into the sum of self-dual and anti-self-dual forms (cf. [AHS]). 

5. Linear P3 (C)‘s on Q+ and the conformal geometry of S6 

Consider the twistor fibration t : Q+ + S6. In Section 2 we saw that the quadric Q 
parametrises one of the families of linear P3 (C)‘s lying on Q+. If n E V is a real isotropic 
vector, then [x] E Q is in the sphere S6 and the corresponding P3 (C) c Q+ is just the fibre 
t-‘([xl) as in Proposition 3.2. In this section we will consider the other members of the 
family Q. 

Notation 5.1. Let x E V be a non-zero isotropic vector. We set K$ = (+ E C+ : x . @ = 0) 
and [KT] will denote the image of Kjf in P(C). We denote by (x, a(x)) the subspace of 
V spanned by x and o(x), by (x, 0 (x))’ its orthogonal complement with respect to B and 
by [(x, a(x))‘]-the image of (x, a(x))’ in P(V). 

Proposition 5.2. 
(a) If x E V is a non-zero isotropic vector, then 

rW,fl> = 1(x, a(x))‘1 I-’ S6; 

(b) ifmoreover x and o (x) are independent over @, then the restriction ofB to ((x1 CT (x))‘)” 
is ofsignature (5, 1). 

Proof 
(a) Suppose @ E K$ - (01. Then T([$]) = [Ann $ na(Ann I+%)] by Proposition 3.2. The 

complex vector space Ann + II a(Ann $) is of dimension one and invariant under o so 
we can choose a non-zero real vector y E V which generates it. 
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Since y . + = 0 and x . @ = 0, we have (x . y + y . x) . @ = 0 and by the rules 
of Clifford multiplication this implies that B(x, y) = 0. Since y is a real vector, this in 
turn implies that B(a(x), y) = 0. Hence [y] E [(x, a(x))‘] f’ S6 and we have shown 
that t([KT]) c [(x, o(.~))~] n S6. 

To prove inclusion in the other direction, suppose that [z] is an element of 
[(x, a(x))‘] fl S6, where z E V is a non-zero real isotropic vector. Then x and z 
span either a one-dimensional or two-dimensional isotropic subspace of V and so by 
Proposition 2.2(c) there exists a non-zero isotropic spinor such that x . $ = z . I++ = 
a(z) @ = 0. Thus there is a 3 in Kz such that z E Ann @ II a(Ann +) and we are 
done. 

(b) Suppose that x E V is an isotropic vector such that o(x) # hx for any h E C. 
Then B(x, a(x)) # 0 because otherwise the subspace (x, a(x)) c V would be the 
complexification of a two-dimensional isotropic subspace of Vu and these do not exist in 
signature (7, 1). This implies that the restriction of B to the real vector space (x, a(~))~ 
is of signature (2,O) for an orthogonal basis is given by the vectors x + c(x) and 
i(x -0 (x)). Hence the restriction of B to the real orthogonal complement ((x, 0 (x))‘)” 
is of signature (5, 1). 0 

Remark 5.3. From Proposition 5.2(a) it is immediate that 

t([K~I) = t([K~l) es [xl = [ylor[a(x>l = [YI. 

Remark 5.4. Given a six-dimensional real subspace W c V” such that B 1 W is of signature 
(5, l), one can always find an isotropic vector x E V such that a(x) # hx and W = 
((x, a(x))‘)“. This line [x] is determined up to conjugation by o. To prove this observe 
that (W’)” is a two-dimensional real vector space such that the restriction of B is of 
signature (2,O). For [x] we take an isotropic line in W’ @C and there are only two of these. 

Proposition 5.2 gives a characterisation of the images under the twistor map t : Q+ + S6 
of the P3(C)‘s on Q+ parametrised by the quadric Q. There are two cases: 

(i) if c(x) = hx-i.e. if [x] E S6-then [(x, a(x))] fl S6 = [x] and t([K,f]) = [xl. This 
says that the fibres of r : Q+ + S6 are members of the family Q. 

(ii) if a(x) # Lx-i.e. if [x] E Q\S6-then s([K,f]) = [WI rl S6, where W is a real 
six-dimensional subspace of V such that the restriction of B to W is of signature (5, 1) 
Recalling that S6 is the real projective isotropic cone of a real inner product space of 
signature (7, l), it is well known that [W] fl S6 is a conformal four-sphere in S6 and 
that every conformal four-sphere in S6 can be obtained by intersection with a unique 
such W. 

It follows from (ii), Remarks 5.3 and 5.4 that the map [x] H t([K,f]) defines a 2 : 1 
covering of the space of conformal four-spheres in S6 by the complex manifold Q\S6 
or equivalently, an isomorphism of the complex manifold Q\S6 with the space of ori- 

ented conformal four-spheres in S6. Now Q\S6 has a ‘tautological’ bundle with fibre type 
Ps(@)whose fibre at [x] is [K,f] and the space of oriented conformal four-spheres in S6 
carries the tautological bundle with fibre S4. The rest of this section is essentially devoted 
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to showing that the map between these two tautological bundles induced by t is fibre by 
fibre the Penrose twistor fibration. 

In order to study case (ii), fix x in V such that o(x) # hx and let us denote the conformal 
four-sphere r([K$]) by S,“. We also denote by $+(1x]) the space of complex structures 
on TlxlS6 which preserve the conformal structure and induce the orientation w+, and by 
\“\lXl (W) the space of complex structures preserving the real subspace W c TI.~I S6 and the 
induced conformal structure. Then we have: 

Proposition 5.5. 
(i) K: n K+ U.(X) = K, fl K- B(x) = 101. 

(ii) The restriction of the twistor map 5 : Q+ + S6 to 5 : [Kz] --+ S,” is isomorphic to 
the Penrose twistorjbration for a suitable orientation of the conformalfour-sphere S_:. 
Its restriction to t : [Key*,] + S.: is then isomorphic to the Penrose twistorfibration 

for the opposite orientation of the conformal four-sphere S,“. 
(iii) Jf[z] E S_z and if we identify s-‘([z]) with $+([x]), then 

(+(kl) n [K,+l) U W’([zl) n [K&,1) 

= {J E 3+([zl): JV,z&) = T,&l 
2’ $rzl (TF~~S:) (by restriction). 

Proo$ Let us first remark that B(x, a(x)) # 0 since otherwise (x, a(x)) would be the 
complexification of a real, two-dimensional, isotropic subspace of (V, B) and these do not 
exist in signature (7, 1). 

To prove (i), suppose that @ is a spinor such that x @ = a(x) . IJ = 0. Then x . a(x) . 
+ +a(~) .x. 9 = 0 and hence -2B(x, o(x))+ = 0 by the rules of Clifford multiplication. 
Since B(x, D(X)) # 0, we have $ = 0. This proves (i). 

To prove (ii), let us realise K$ 63 KJcx, as a space of spinors for the real Lorentz space 
(W,“, B, a) such that this decomposition is the decomposition into semi-spinor spaces. 
Here we write W, = (x, a(x))‘. Define the linear map f : W, + C(V, B) by 

f(z) = l 
J2B(x, a(x)) 

z . (x + o(x)). (3) 

Then, taking the square of f(z) in the complex Clifford algebra C(V, B), we get 

f(z12= l 
2B(x, a(x)) 

z . (x + a(x)) . z . (x + a(x)) 

= 2B(x,10(x))(-z2~ . (x . o(x) + a(x). x) 

1 

= 2B(x, a(x)) 
(2B(z, z))(-2B(x, o(x)))ld 

= -2B(z, z)ld, 

usingtherelationsz.x+x.z = z.a(x)+o(x).z = Oandx2 = a(.~)~ = O.By 
the universal property of the Clifford algebra C (W, , B), the map f extends to an algebra 
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homomorphism f” : C( W,, B) + C( V, B), which is injective since the algebra C( W,, B) 
is simple. It remains to show that for z E W,, f(z) acting by Clifford multiplication in C 
sends Kz to KTcx, and vice versa. 

If+ E Kz,thatisifx.$ =O,wehave 

j(z).llr=z.x.~+z.a(x).~=z.a(x).~, 

which is in Kz(,) since 

a(x). z. a(x). q = -_z . a(xy. l+9 = 0. 

Similarly, j(z). Kf acxj E K,‘. From this, we deduce that f maps C( IV,, B) into End(K$ G9 

Kzcx, and this must in fact be an isomorphism for dimensional reasons. Thus, the space 

K,’ @ K&J is a spinor space for the (5,l) signature Lorentz space (W,, B) and hence the 

map t’ : [K,f] + S,” given by 

t’([@]) = [{W E w,“: fl(uJ> . @ = O)] 

is the Penrose twistor fibration for a suitable orientation of S, by Section 2. It remains to 
show that t([@]) = t’([@]) for @ E K$, or in other words that 

{w E W,” : f(w). pb = 0) = Ann(+) n (a(Ann(@))) 

By formula (3) above, f(w) . $ = 0 means that w . (T(X) . $ = 0 (since x . @ = 0), whence 
cr (x) . w . $ = 0 because w and CJ (x) are orthogonal vectors. Similarly, x . w . $ = 0. Thus 
w. $ E K; fl Kicx, and this is {O} by part (i). Hence w E Ann(+) and so w E a(Ann(@)) 
since w is a real vector. This proves (ii). 

Differentiating Proposition 5.2(a) identifies the subspace rrZIS_: 18 @ in q,1S6 @ Cc Y 

L: @ Lk/LZ as 

q&,4 8 @ s L; c3 (x, a(x), z)l/Lz. 

Let us define the one-dimensional isotropic subspaces A, A of TIZl S6 @ @ by A = L: @I [x] 
and A = Lz @ [a(x)], where [x] is the equivalence class of the isotropic vector x in Lk/L,. 
Then clearly A @ A = (TL,~$! @ a=)’ and we have the decomposition 

T,,,S6 @I C = T,,,S,4 @ @ $ A @ A. 

Now, by Proposition 2.4(c), part (iii) is equivalent to proving that 

t-‘([z]) n [K:] = (+: A f I+? = 0) and t-‘([z]) fl [K&,1 = {I+?: A. $ = 0). 

But this follows from the definition of A and A, and the fact that x . @ = 0 for 1c/ E K,’ 
anda(x).$=Ofor+E Kzcx,. 0 

Summarising the above results, we have proved the following theorem. 

Theorem 5.6. 
(i) If P is a P3 (C) belonging to the family parametrised by Q (cf. Section 2), then P is 

either a fibre of the ftbration t : Q+ + S6 or its image r(P) is a conformal four 
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sphere (cf. [I]);furthermore t : P + t(P) is isomorphic to the Penrosefibration for 
a suitable orientation of T(P). 

(ii) Over each conformal four sphere S in S 6, there are exactly two P3(C)‘s of the family 
Q. They induce opposite orientations on S and intersect eachfibre of 5 : Q+ -+ Sh 

over S in two disjoint PI (C)‘s. If we identify r : Q+ + S6 with the twistorjibration, 
then these P3 (C)‘s are the images of the twistor lifts (cf Definition 4.8) of the inclusion 
s- s6. 

Remark 5.7. The theorem gives a description of one family of linear P3(@)‘s on the twistor 
space of S6 in terms of the conformal geometry of S6. If we take a 4 (C) in the other family 
(parametrised by Q_), it is easy to see that the map r sends it onto S6 and that the restriction 
of r is injective except on a q(C) which is collapsed to a point. Schematically, this is the 
map from P3(C) = C3 U (9(C)), to S6 = lh@ U (00) which maps C3 isomorphically onto 
lR6 and the hyperplane at infinity to the point at infinity. 

Remark 5.8. Any conformally flat, oriented six-manifold M is locally isomorphic to the 
standard six-sphere and the twistor construction produces a complex six-manifold Z+(M) 
which is fibred over M with fibre Pj(C), say TM : Z+(M) + M. The image under TM of 
a small deformation 6 of the fibre Z,f at m E M is either a point or a conformal four-sphere 
Si in M and then the map TM : 6 + Sj is the usual Penrose twistor fibration for a suitable 
orientation of Si. Conversely, given any oriented conformal four-sphere in M, its Penrose 
transform is a P3 (C) lying on Z+(M) by the twistor lift construction of Definition 4.8. Thus 
we can define an involution OMc on the space MC of small holomorphic deformations of 
fibres by 

DMc (6) = 6 if 6 is a fibre; 

a,++(the twistor lift of (S4, w)) = the twistor lift of (S4, --o). 

This gives an intrinsic (that is in terms of the conformal geometry of M) definition of the 
real structure on MC which was also defined in [I]. Hence we have an embedding of M in 
MC as the fixed point set of arc. Since the holomorphic normal bundle N to a fibre satisfies 
dim Ho(N) = 6 and H’(N) = (0) (cf. Remark 4.3) MC is a complex manifold by the 
theory of Kodaira and the tangent space at 6 E MC is naturally isomorphic to H0(6, N), 
the holomorphic sections of the normal bundle to 6 in Z+(M). The sections which vanish 
somewhere define the isotropic cone of a complex conformal structure on MC. Locally the 
embedding M L, (MC, oMC) is isomorphic to the embedding S6 L, (Q, a) of Section 3 
and this implies that OMc is antiholomorphic and that the complex conformal structure of 
MC is reduced to a positive definite conformal structure over the fixed point set of (TM~, that 
is over M. 

This situation is similar to the case (cf. [AHS]) where M4 is a self-dual four-manifold 
and one embeds M4 in the space of PI (C)‘s lying on its twistor space as the fixed point set 
of an antiholomorphic involution. However there is a difference: in the four-dimensional 
case, the antiholomorphic involution of the space of PI (Q’s on twistor space is induced 
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by a natural holomorphic involution of twistor space whereas in the six-dimensional case 
there is no such natural involution on twistor space which induces CD on the space D. 

6. Vector bundles on quadrics which are trivial on a linear 4(C) 

In this section we will prove the following theorem and deduce some corollaries. 

Theorem 6.1. If c -+ Q+ is a holomorphic vector bundle such that the restriction of 4 to 
the$bres oft : Q+ + S6 is holomorphically trivial, then 4 -+ Q+ is holomorphically 
trivial. 

Prooj The Penrose/Ward transform (cf. [A,AHS]) sets up acorrespondence between certain 
holomorphic bundles over Ps(C)and bundles with self-dual connections over S4. We will 
adapt the complex analytic version of this correspondence, of which the details are given 
in Hitchin’s paper [HI, to our case. 

The main point of the proof is the following lemma. 

Lemma 6.2. The vector bundle ‘H’(e) + S6 whosejibre at p E S6 is the complex vector 
space H”(t-‘(p), 4) has a natural connection V. 

Proof By hypothesis, dim H”(r-l(p), c) = rank t is constant since 6 restricted to the 
fibres is holomorphically trivial. Hence the assignation p H H’(t-‘(p), 6) does indeed 
define a smooth vector bundle over S6 by elliptic regularity. To ease the notation, we will 
write Fp for r-’ (p) from now on. 

As explained in [A,H], a section of the bundle 4 over the first-order formal neighbourhood, 
denoted Fj”, of Fp in Q+ gives rise to an element of J~(ti”(~)), the one-jet bundle of 

X0(t) at p. A connection in any vector bundle rl + B can be seen as a splitting of the 
exact sequence 

so to define a connection in the vector bundle ‘F1’(6) it is sufficient to show that each 
section of 6 over Fp can be uniquely extended to a section of e over the first-order formal 
neighbourhood of F,, in Q+. For more details of this argument, see Section 3 in Ch. VI of 

[Al or [HI. 
Now the appropriate exact sequence of sheaves over Q+ for this extension problem 

(cf. [A,H]) is 

where N* is the holomorphic conformal bundle of Fp in Q+, O:, (.$) is the sheaf of (germs 

of) sections of c over Fjl’ and c?,?,(t) is the sheaf of (germs of ) sections of c over Fp. 

The map 0:; (6) + OF, (6) is just restriction. Taking cohomology we get 
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0 + H0(C3Fp(N* @ &Y)) + H”@;(o) 

--+ H%%,(Q) + H’(OF,(N* 8 4)). . . 

263 

By hypothesis, <]Fp is holomorphically trivial and so HO(O~,,(N* @ 6)) = (0) iff 
If”(O~,,(N*)) = (0) and H’(C?F,,(N* @ <)) = (0) iff H’(O,c,(N*)) = (0). By 
Remark 4.3, for the normal bundle N + F,, we have H’(N*) = H’ (N*) = (01. Substitut- 

ing these results in thecohomology sequence shows that the restriction map HO(O~,~(~)) + 

H’(c3~~(4)) is an isomorphism and the lemma is proved. 
We now have a connection V in l-to(<) -+ S6 which we will show is flat. The first point 

is that the pullback bundle s*(‘If’([)) + Q+ is naturally identified with 6 + Q+ by 
evaluation. Thus < -+ Q+ carries the connection r*(V). The second point is that t*(V) is 
compatible with the holomorphic structure of 6 -+ Q+. This follows mutatis mutandis from 
the Remark after Corollary 3.8 in [HI. Hence the curvature from F (r * (V)) has no component 
of type (0, 2)-this is precisely the compatiblity condition. But F(s*(V)) = s*(F(V)) is 
the pullback of a two-form on S6 and so by Corollary 4.10, F(V) = F(s*(V)) = 0. 

The holomorphic vector bundle .$ + Q+ therefore has a flat connection which is com- 
patible with its holomorphic structure. Since Q+ is simply connected, we can find a global 
trivialisation of covariantly constant sections and these are holomorphic by compatibility. 
Hence c+ + Q+ is holomorphically trivial. 0 

Corollary 6.3. If 6 -+ Q+ is a holomorphic vector bundle such that the restriction of[ to 
a linear Pz(C) is holomorphically trivial, then t; + Q+ is holomorphically trivial. 

Proot Recall from Section 2 that the quadrics Q and Q- parametrise two families of linear 
P3(C)‘s on Q+ and that the family Q contains the fibres of the map r : Q+ + S’. In the 
course of the proof we will refer to linear Pt (C)‘s and linear Pz(@)‘s lying on Q+(c P7(C)) 
as lines and planes respectively. 

The idea of the proof is to show that the hypothesis of the corollary implies that c 
restricted to each fibre of r : Q+ -+ S6 is trivial and then apply the theorem. We will need 
the following result of Barth [B]. 
(A) If 6 + P,(C) is a holomorphic vector bundle whose restriction to some P?(C) is 

holomorphically trivial, then 6 -+ P,(C) is holomorphically trivial; 
and the classical facts (cf. Proposition 2.2) 

(B) If PI and P2 are two linear P3(C)‘s on Q+ in the same family, then either PI = 

P2. PI n P2 = 0 or PI n P2 is a line. 
(C) If PI and P2 are two linear Px(C)‘s on Q+ in different families, then PI n P2 is either 

a point or a plane. 
(D) If P is a linear P3(C) on Q+ and I7 is a plane contained in P, then there is a unique 

P’ in the other family of P~(@)‘s such that P n P’ = I7. 

Now suppose that nl is a plane on Q+ such that <ll7) is trivial. Choose a P3(C)in 
the family parametrised by Q_, say P-, which contains I7t. By (A), 6 1 P_ is trivial and by 
Remark 5.7, P_ intersects one fibre of r : Q+ --f S6 in a plane and the others in exactly one 
point. Clearly c is trivial on the exceptional fibre by (A). Let F be a fibre which intersects P- 
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in a point, say P_ fl F = {x) and let fl2 be any plane such that x E I72 c P_. By (D), there 
is a unique P3(@), say P+, in the family parametrised by Q such that P+ fl P_ = l72 and 
then 4 I P+ is trivial by (A). But P+ fl F contains a point, namely X, and so in fact contains 
a line, say L, by (B). Let I73 be any plane in F which contains this line L and let Pi. be 
the unique (using (D)) Pj(C)in the family parametrised by Q_ such that F fl PL = l73. 
By (C), we see that P+ fl PL is a plane since it contains the line L. We already know that 
4 ( P+ is trivial so that 4 I PL is trivial by (A). Thus 6 1 I73 is trivial and since I73 is a plane in 
F, it follows from (A) again that 4 1 F is trivial. 

In conclusion, we have shown that 6 is trivial on every fibre so applying the theorem, the 
corollary follows. 0 

By induction this result can be extended to give: 

Theorem 6.4. Let G be a non-degenerate, complex quadric hypersu$ace of dimension 
greater than or equal to six. Ife + G is a holomorphic vector bundle such that 6 restricted 
to a linear P2 (C) is holomorphically trivial, then 6 + G is holomorphically trivial. 

Prooj Corollary 6.3 is the result for a six-dimensional quadric. Suppose that it also holds 
for the n-dimensional quadric (n 1 6) and let us deduce that it then holds for the n + l- 
dimensional quadric. 

To fix notation, let (V, B) be an n+3-dimensional complex vector space V, equipped with 
a non-degenerate, symmetric bilinear form B. Then our model for the n + l-dimensional 
quadric will be 

Gn+l = [L E P(V): BJL = 0). 

The intersection of this quadric with a hyperplane is a quadric of dimension n, which may 
be degenerate. If H, denotes the hyperplane {x E V : B(x, v) = 01, then Hu fl Gn+l is 
a non-degenerate quadric of dimension n if and only if B(v, u) # 0. Let G, be any non- 
degenerate quadric of dimension n lying on Gn+t which contains the plane P on which c is 
trivial. (Such a G exists when n L 4). The induction hypothesis implies that eIG, is trivial. 

By definition the quadric G, is the zero locus of a section of the standard positive line 
bundle O(1) (over G,+r) so the ideal sheaf of G, is isomorphic to OG,,, (-1). Hence we 
have the exact sequence of sheaves on Gn+t (corresponding to the restriction of functions 
on Gn+t to functions on G,) 

o-+ 0(-l) + 0 --f OG, -+ 0, 

where 0 denotes the structure sheaf OG,+, for brevity. Tensoring with the locally free sheaf 
of germs of sections of holomorphic sections of ,$, we get the exact sequence 

0 + c3(C(-l)) + O(6) + OG,W -+ 0, CR) 

and taking cohomology gives the long exact sequence 

0 + H’(O(U-1))) + H’(O(O) -+ H”(%,(0) 
+ H’(O(U-1))) + H%‘(O) -+ H?%,(O) ... 
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Lemma 6.5. Every holomorphic section of 6 over G, extends uniquely to a holomorphic 
section of { over G,,+l; that is, the map H’(O(c)) -+ H0((3~, (6)) in the above sequence 
is an isomorphism. 

Proo$ Tensoring the sequence (R) by 0(-k), where k > 1, gives 

0 + U(C(--k - 1)) -+ (?(U-k)) -+ %,,(C(-k)) + 0, 

and taking cohomology gives the long exact sequence 

0 + H’(O(<(-k - 1))) --+ H’(O(U-k))) + H’(Q,(<(-k))) 
-+ H’(CX-k - 1))) + H’(C%-k))) + H’(C?&(-4)) ... 

(&) 

For k p 1, H”(O~, ((-k))) vanishes because C?G, ((-k)) is a negative line bundle and the 

group H’(C?c,((-k))) 2 H”-‘(U’(k))* is also zero by Serre duality and the Kodaira- 
Nakano vanishing theorem (cf. [GH]). Since c restricted to G,is trivial, the same groups 
vanish for < restricted to G, and so we have H’(CJc,({(-k))) = H’(~G,,(((-k))) = (0) 
when k 2 1. Substituting this in the cohomology sequence we get 

H’(CJ(<(-k - 1))) 2 H’(0(((-k))) fork > 1. 

or in other terms 

H’(CI(<(-1))) 2: H’(CQ(-2))) S ... Z H’(C’(<(-k))) % ... 

By another theorem of Kodaira (Theorem B in [GH]), H’(O(,$(-k))) = [O] for k large 
enough and so all of these groups vanish. In particular the first one is zero and this is exactly 
the condition for the map HO(O(t)) + H”(C3~, (4)) of(R) to be surjective. The lemma 
is proved. 

To see that the restriction map is injective, substituting H’ (CJG,, ({(-k))) = (0) in (Rk) 
we get 

H’(O([(-k - 1))) 2 H’(O([(-k))) fork > 1. 

By a Kodaira vanishing theorem, exactly as above, this implies that H’(O({(-k))) = (0) 
for k > 1, and in particular that HO(O(t(-1))) = (0). Substituting this in the coho- 
mology sequence (RI) shows that the restriction map H’(O(t)) + H”(~G,, (0) is an 
isomorphism. 0 

From Lemma 6.5 it follows that there are exactly r global holomorphic sections of 
,$ + G,,+t where r is the rank oft. To prove that t + Gn+t is holomorphically trivial 
we have to show that at each point of G,,+t the values of these sections form a basis of the 
fibre at that point. This is equivalent to proving that a holomorphic section which vanishes 
somewhere vanishes everywhere. We need the following lemma. 

Lemma 6.6. Let P be a plane lying on the quadric G,,+l and let x be a point sf G,+l. 
Then there exists a non-degenerate n-dimensional quadric G’ in Gnfl which contains both 
the plane P and the point x. 
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Prooj Suppose first that x is not in P. The plane P is the projectivisation of a three- 
dimensional, isotropic linear subspace of V, say W. If L is the isotropic line of V generated 
by X, then L 17 W = (0) by hypothesis and the orthogonal complement of L Cl9 W is of 
dimension n - 1. When IZ > 6, this is too large to be an isotropic subspace of V (which 
are of dimension at most i(n + 3)). Hence there exists a non-isotropic vector y E V 
which is orthogonal to both L and W and then the associated hyperplane Hy = (v E V : 
B(y, v) = 0) intersects Gn+t in a non-degenerate n-dimensional quadric, which contains 
both the plane P and the point X. When x is in P, a similar argument works. I7 

Proof of Theorem 6.4 (continued). Suppose s is a global holomorphic section of < + G,+ 1 
which vanishes at some point X. If P c Gn+l is the plane on which 6 is supposed trivial, 
there exists a non-degenerate, n-dimensional quadric G’ containing x and P by Lemma 
6.6. The induction hypothesis implies that 6 is trivial on G’ and therefore the section s must 
vanish along G’ since it vanishes at x E G’. In particulars vanishes along P. Now if y is any 
point of G,+ 1, we can find a non-degenerate quadric of dimension n, say G”, containing the 
point y and the plane P, again using Lemma 6.6. The induction hypothesis implies that [ is 
trivial on G” and therefore the section s must vanish along G” since it vanishes at P c G’. 
In particulars vanishes at y and therefore s vanishes everywhere since y was arbitrary. 0 
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